Fast antibody fragment motion: flexible linkers act as entropic spring

نویسندگان

  • Laura R. Stingaciu
  • Oxana Ivanova
  • Michael Ohl
  • Ralf Biehl
  • Dieter Richter
چکیده

A flexible linker region between three fragments allows antibodies to adjust their binding sites to an antigen or receptor. Using Neutron Spin Echo Spectroscopy we observed fragment motion on a timescale of 7 ns with motional amplitudes of about 1 nm relative to each other. The mechanistic complexity of the linker region can be described by a spring model with Brownian motion of the fragments in a harmonic potential. Displacements, timescale, friction and force constant of the underlying dynamics are accessed. The force constant exhibits a similar strength to an entropic spring, with friction of the fragment matching the unbound state. The observed fast motions are fluctuations in pre-existing equilibrium configurations. The Brownian motion of domains in a harmonic potential is the appropriate model to examine functional hinge motions dependent on the structural topology and highlights the role of internal forces and friction to function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of linker strain and flexibility in the design of a fragment-based inhibitor

The linking together of molecular fragments that bind to adjacent sites on an enzyme can lead to high-affinity inhibitors. Ideally, this strategy would use linkers that do not perturb the optimal binding geometries of the fragments and do not have excessive conformational flexibility that would increase the entropic penalty of binding. In reality, these aims are seldom realized owing to limitat...

متن کامل

The C-terminal linker of Escherichia coli FtsZ functions as an intrinsically disordered peptide.

The tubulin homologue FtsZ provides the cytoskeletal framework and constriction force for bacterial cell division. FtsZ has an 50-amino-acid (aa) linker between the protofilament-forming globular domain and the C-terminal (Ct) peptide that binds FtsA and ZipA, tethering FtsZ to the membrane. This Ct-linker is widely divergent across bacterial species and thought to be an intrinsically disordere...

متن کامل

Modulation of single-chain antibody affinity with temperature-responsive elastin-like polypeptide linkers.

Single-chain antibodies are genetically engineered constructs composed of a VH and VL domain of an antibody linked by a flexible peptide linker, commonly (GGGGS)3. We asked whether replacement of this flexible linker with peptides known to undergo environmentally induced structural transitions could lead to antibodies with controlled binding and release characteristics. To this end, we genetica...

متن کامل

Comparison of NMR and molecular modeling results for a rigid and a flexible oligosaccharide.

Three-bond heteronuclear coupling constants (3JCH) are extremely useful in describing flexible models for oligosaccharides. We show that antiphase methods for measuring 3JCH in oligosaccharides have limited reliability but that the coupling constants can be reliably measured in natural abundance by quantitative J-correlation methods. Interpretation of 3JCH data for a pentasaccharide (lacto-N-fu...

متن کامل

DFLpred: High-throughput prediction of disordered flexible linker regions in protein sequences

MOTIVATION Disordered flexible linkers (DFLs) are disordered regions that serve as flexible linkers/spacers in multi-domain proteins or between structured constituents in domains. They are different from flexible linkers/residues because they are disordered and longer. Availability of experimentally annotated DFLs provides an opportunity to build high-throughput computational predictors of thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016